Asymptotic behaviour of a transport equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behaviour for a semilinear nonlocal equation

We study the semilinear nonlocal equation ut = J∗u− u− u in the whole R . First, we prove the global well-posedness for initial conditions u(x, 0) = u0(x) ∈ L(R ) ∩ L∞(RN ). Next, we obtain the long time behavior of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J : finite time extinction for p < 1, faster than exponential decay for the ...

متن کامل

Asymptotic Behaviour of a Solution for Kadomtsev-petviashvili-2 Equation *

An asymptotic behaviour of solution of Kadomtsev-Petviashvili-2 equation is obtained as t → ∞ uniformly with respect to spatial variables.

متن کامل

Asymptotic Behaviour of a Difference Equation with Complex-valued Coefficients

Abstract. The asymptotic behaviour for solutions of a difference equation ∆zn = f(n, zn), where the complex-valued function f(n, z) is in some meaning close to a holomorphic function h, and of a Riccati difference equation is studied using a Lyapunov function method. The paper is motivated by papers on the asymptotic behaviour of the solutions of differential equations with complex-valued right...

متن کامل

Asymptotic Behaviour for a Nonlocal Diffusion Equation on a Lattice

In this paper we study the asymptotic behaviour as t → ∞ of solutions to a nonlocal diffusion problem on a lattice, namely, un(t) = P j∈Zd Jn−juj(t)− un(t) with t ≥ 0 and n ∈ Z. We assume that J is nonnegative and verifies Pn∈Zd Jn = 1. We find that solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool, the discrete Fourier transform.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Polonici Mathematici

سال: 1992

ISSN: 0066-2216,1730-6272

DOI: 10.4064/ap-57-1-45-55